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Abstract; The category of the finite-dimensional representations of kA.. was studied first, with all

its indecomposable objects and their extenswere were given explicitly, the Ringel-Hall algebra

H(FA..) was investigated for a finite field # was investigated. The main viewpoint of this

investigation is to regard H(kA..) as the direct limit of the Ringel-Hall algebra H(kA,). In

particular, a PBW-basis of H(kRA. ) was gotten.

coincides with its composition subalgebra.

The investigation shows that H(RA..)

Key words: quiver; path algebra; quantum group;Ringel-Hall algebra; direct limit

CLC number:0O152. 5 Document code: A

AMS Subject Classification(2000) : Primary 17B37; Secondary 16 W35

A.. B Ringel-Hall X %}

Tk E, "

(P EBLAPOR KRR FR L ZBAA A 230026)

WE.AAMAEIEEERE LA RBRREIA . HHREREE BT A HRERESES A
89 A FF quiver FF 3t 2 6 35X 4k L0 A TR YEALTE W Z 1A 09 % A 45 BV 09 LR 09 26 T PR 69 R T & f A TR
Ye A AR AFR 2B T AT o BARZ BT K, RGL T AR L, IR T ELEATRYE LA HTE% L
#) Ringel-Hall X4k H(RA.). £ T HRA.) BIFA % n A& co B H(RA,) 89 EmM I, 4R 69 % 3] T
H(kA.) #5—A PBW 3, 5F BB H(RA.) 153475 € o9& F R EARF o

KA AT B 38R 4; 2 F A Ringel-Hall K 4% ; E @42 1R

0 Introduction

Given a finite quiver Q without oriented
cycles, one has the corresponding symmetric
Cartan matrix, and then the corresponding
Kac-Moody algebra and its quantized enveloping
algebra U =U(Q). On the other hand, one has the

Ringel-Hall algebra H(kQ) of the path algebra £Q

% Received:2005-09-29 ; Revised : 2006-01-06

over a finite field .. The most important progress
of the study of quantum groups in the last decade is
Green"* and

Lusztig¥, the positive part U™ of U is isomorphic

that, as invented by Ringel"*,

to, in a canonical way, the twisted and generic
version of Ringel’s composition subalgebra C(kQ)
of H(kQ). This isomorphism has been extended to
U by Xiao in Ref. [ 5] by using the Drinfeld double,
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also see Ref. [ 6 ](Deng and Xiao). This provides a
framework of the Ringel-Hall algebra’s approach
to quantum groups.

The natural question then is whether or not
this approach also works for infinite quivers. The
first step towards this effort is to look at the quiver
of A.. type and the corresponding quantum group
U,(sl..). This is the aim of the present paper.

In order to study the quantum group of type
sl.. via Ringel-Hall algebra of A.. type, first, we
need to deal with finite-dimensional representations
of the infinite-dimensional path algebra RA.. over
any field k.

dimensional algebra without identity element and

Notice that £A.. is a infinite-

there exist no projective objects in its category of
finite-dimensional modules. However, a finite-
dimensional AA..-module can be viewed as a
module of a path algebra of type A, for some n &
N; and the Ringel-Hall algebra H(RA..) can be
viewed as the direct limit of the Ringel-Hall
algebra H(kA,).

In section 1 we studied the category of the
of kA. by

determining all its indecomposable objects and

finite-dimensional representations

their extensions explicitly. In section 2 we
investigated the Ringel-Hall algebra H(kA..) by
calculating the product of two modules of H(kA..)
inside H(kA,) for suitablen € N. In particular, we
got a PBW-basis of H(kA..), and showed that
H(kA..) is a composition algebra.

In this paper, N denotes the set of positive
integers. All modules are finite-dimensional left

modules. Denote by | X| the cardinality of a set X.

1 Finite-dimensional representations
of path algebras of type A..

A quiver Q consists of Q = (Qy,Q,.h,1),
where Q,,Q, are two sets, which are respectively
called the set of vertices and the sets of arrows of
Q. and h,t are two maps from Q; to Q, for which
h(a) and t(a) are respectively called the head and
the tail of ¢« € Q,. A path p in Q of length / means a

sequence of arrows p = a;***a; with t(a;) = hai1)
for1<{i<{[l—1. Seth(p) = hla) t(p) = t(a;)
and [(p) = [, which are called the head, the tail
and the length of p respectively. Regard a vertex
i €Q, as a path of length 0 and denote it by e;.

For any field # and any quiver Q, let #Q be the
k-space with basis the set of all finite length paths
inQ. For any two paths p = a,,***a1 and g = 3,***
in Q, define the multiplication

B Branrars i t(p) =h(g,
= 0, otherwise.
Then #Q becomes a k-algebra, which is called the
path algebra of Q. A representation (V, ) of a
quiver Q over a field & is given by a vector space V;
for each i € Q, and a k-linear maps f,:Viw = Viw
for each arrow o« € Q,. We say the representation
(V, ) is finite dimensional over & if (—BIEQO V:is. It
is  well-known that the category of finite
dimensional representations of a finite quiver Q
over a field k& is equivalent to the category of finite-
dimensional #Q-modules. For n € N, consider the

path algebra £A, of the following quiver A, :

1w 1 1 g n
Remark 1.1 It is well-known that the quiver

A, is of finite representation type, that is, there

are  only  finitely @ many  non-isomorphic

indecomposable £A,-modules. All non-isomorphic

indecomposable representations of kA, are given as

follows,
(D (D1, 1, G+—D (n)
0 —> oo —>h—> ce0. ——>

k. —>0—>0,
where ] <</i<{n,and1<{s<n—i+1,i,s€ N,1,
is the identity map. For general representation
theory of finite-dimensional hereditary algebras
please refer to Refs. [7] and [ 8.

Denote by kA.. the path algebra of the quiver
A

I o 1w I g n

Remark 1.2 Note that 2A.. has no identity
element according to the definition of path
algebras. It is easy to check that 2A.. is a infinite

dimensional k-algebra. Throughout the paper a
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module E over RA.. is always supposed to satisfy
the condition kA..E = E, which is equivalent to
E = @ien eE.

Denote the category of finite dimensional
kA..-modules (resp. kA, -modules) by kA. -mod
(resp. by kA, -mod).

Lemma 1. 1 For any kA..-module E there
exist unique integers m € N such thate, E 74 0, and
e;F. = 0 for any j > m,j € N. Moreover E can be
naturally viewed as a unitary k£A,,-module.

Proof Since E =@icne;E and E is finite
dimensional, there are only finitely many 7 such
that ¢, = 0. Thus one can take m to be the largest
integer 7 satisfying e,E 7 0. []

Remark 1. 3

associate a given kA..-module E with a positive

Lemma 1. 1 provides a way to

integer m in a unique way such that £ = kA, E e, E
= 0. If it’s the case, we say that E is of m-type.
If Eis a kA, -module, then E is
also a RA..-module (resp. kA,-module if n > m)
such that ¢, = 0 for any i > m,i € N (resp. for
m<i<n,i € N).

Proof RA,, — End,(E) be the
k-algebra morphism giving E the £A,, module
structure. It is easy to check that kA,, L RA../ 1,
where Jis the ideal of kA .. generated by {a; »e¢; lid
[1om). j & [1.m].i,j €N} Letn: kA —>>kA,,

be the canonical k-algebra epimorphism. Then we

Lemma 1. 2

Let p :

get a k-algebra morphism gr : kRA.. = End,(E).
Thus E also becomes a kA..-module. Concretely,

for any u € E and any path p in A.. we have

o(p) (), if pisa pathinA,;
pu = )
0, otherwise.
[]
Lemma 1.3 Let E, F be kA..-modules and

f €Hom; (E,F). Then there exists m & N,
such that f(pE) = 0 for any path in A.. with p &
A, and [ € Homp (E.F).

Proof Suppose that E is of r-type and F is of
u-type. Let m = max{r,u}. Then E and F can be
viewed as kA,-modules by lemma 1.2. For any
path p in A.. with p & A,, one has pE = 0, so
f(pE) =0. Since f € Homu (E,F), it certainly

holds f & Hom, (E,F). []

Theorem 1. 1
fully faithful and extension closed subcategory of
kA .. -mod (resp. kA,-mod if m < n).

Proof LetM, N € kA,-mod, then M, N can
be viewed as kA .. modules by lemma 1. 2. For f €
Hom (M,N), one has f € Hom (M, N) since
form € M, pa pathinA. ,

pfim),

0=pflm,
Thus one can define a map ¢ : Hom, (M,N) —
Homu  (M,N) viag(f) = ffor f & Hom, (M,
N). Conversly if f € Homu (M,N), certainly
f € Homy, (M, N). Thus one can define a map ¢ :
Hom (M, N) — Hom (M, N) via ¢(f) = ffor
f€Homu (M,N). It is easy to check that p¢p =
id and po=1id, thus Homy (M, N)=Homu (M,
N). let 0>M —>E—> N—>0 be a short exact
sequence in RA..-mod, then ¢;E = 0 for any j > m,
J € N since e,M = ¢;N = 0. Then this is just a
short exact sequence in kA ,-mod.

Theorem 1.2 If E is a kA..-module of
m-type, then E is indecomposable if and only if E is

kA ,-mod can be regarded as a

if pisapathinA,;
S(pm) =

otherwise.

indecomposable as a kA, -module. Moreover, all
finite-dimensional indecomposable £A..-representa-
tions are given by

(@ 1, 5 La Ly (D

eee() —> k —> ()eee
Witha<b9a9b 6 N.
Proof it is easy to prove by lemmal. 1,

lemma 1. 2, theorem 1.1 and remark 1. 1. L]
For convenience, we denote the indecomposable
kA..-module corresponding to the representation

(@) 1, 1, 1,
e —> b 4 k i . 4 b —> (e

by indf witha < b,a,.b € N.

Define the length of ind{ to beb—a—+1, denote
it by /(ind}). For any kA.-module E, if it is
isomorphic to @,—,'E;, define /(E), the length of

l
E, to be EZ(E;), where E; are indecomposable

i=1

RA..-modules.
Let { S,‘

isomorphic

i € N} be all the pairwise non-
kA..-modules. For E €&

simple
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kA..-mod, denote by dim E = ((dim E). )en the
dimension vector of E, i. e. (dim E),, is the Jordan-
Holder multiplicity of S; in E. Given kA..-modules
A and B, consider the set Ey (A.B) consisting of
all such short exact sequences of AA..-modules:
0—>B—>FE — A — 0. Two short exact sequences
0>B—E, —>A—>0and0—>B—FE,—>A—>0in
E.. (A.B) are said to be equivalent if there is a
homomorphism of £A..-modules « : E; — E, such
that the diagram commutes. It is easy to check that
the relation defined above is an equivalent one.
Denote the set of equivalence classes of E,, (A.B)
by Eu (A,B). For any kA, -modules E,F,
Ek‘\m (E,F) and Ep (E,F) can be defined in a
similar way.
0—>B—> E,—>A—>0
| W
0—-B— E,—~>A—0

Lemma 1.4 Let M, N be kA..-modules of
r-type and u-type respectively. If there is a short
exact sequence in kA..-mod;:0—> M—>E—>N —0,
then E is of m-type where m = max{r,u}. In
particular the short exact sequence can be viewed
as a short exact sequence n /eA,,;mod.

Proof Since dim E = dim M+dim N.  []

Theorem 1.3 Let M, N be £A..-modules of
r-type and u-type respectively. Letm = max{r,u}.
Then there is a bijection of sets ;7; Eu (M,N) =~
Exta (M, N).

Proof On the one hand, any such short exact
sequence 0 —> N—>FE —>M — 0 in kA..-mod is also
a short exact sequence in kA ,-mod by lemma 1. 4.
Moreover the above diagram (1) as kA,,-modules is
commutative if as RA..-modules the diagram is.

On the other hand, M and N can be viewed as
kA, -modules, and any short exact sequence of
kA,,-modules 0—> N—FE —>M — 0 can be viewed as
a short exact sequence of AA..-modules by lemma
1. 2 and theorem 1. 1. Also as AA..-modules the

above diagram (1) is commutative if as
kA, -modules the diagram is.
So the set EA& (M,N) is isomorphic to

EM,” (M,N). The set Ex (M, N) is isomorphic to

En (M,N). Tt is well known that there is a
bijection of sets
7t Ewn (M,N) = Ext! (M,N).
Thus as set Eu (M,N) is
Ext,0) (M,N). L]
Corollary 1.1 If A, Bare kA..-modules, then
the set E, (A,B) has a natural abelian group

isomorphic  to

structure.
Proof
;7 : En (A,B) =Exti! (A,B), for some m € N

by theorem 1. 3, and since Ext;! (A,B) carries a

Since there is an isomorphism of sets

natural abelian group structure. []

Corollary 1.2  For any AA..-module E,
Ew (E.ind),) consists of only one element for
m & N,

Proof Assume that E is of rtype for some
r € N. Let n = max{r,m}. Then the #A..-module
ind}, can be viewed as a #A,-module, and so can the
kA..-module E. Furthermore ind), is a injective
kA,-module, so Exty '(E,ind,) = 0.
Eu (E,ind,) has only one element by theorem

1. 3. O
2 The Ringel-Hall algebra H (kA .. )

Let £ be a finite field with | £| = ¢<Zco. In the
following we will only concern about the category

of finite left #A..-modules, which is denoted by

Hence

kA..~fin. Here a finite module means that it only
contains finitely many elements. Because finite

kA..-modules are exactly finite-dimensional

kA..-modules, it follows that £A..-fin=FA..-mod.

Lemma 2.1 E, (M.N) is a finite set for
M,NEEA..-mod.
Proof It follows from theorem 1. 3. ]

By lemma 2. 1 we know that RA.. is a finitary
ring.

Let M, N;, *=-, N, € kA..-mod. Denote by
g%p"“Nl the number of filtrations

M=MOM D 2DOM, =0

of M such that M, | /M; 2 N, for 1 < <t

Remark 2.1 Assume that M is a kA..-module
of m-type. Then any submodule and quotient

module of M can also be viewed as kA, -modules.
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As kA..-modules any filtration M = M, ©> M, D
<« DM, = 0 of M such that M, , /M; & N, for 1 <{i
<t can be viewed as a filtration of £A,,-module M.
On the other hand any filtration M = M, D M, D
<« DM, =0 of kA, -module M such that M, /M, 2
N, for 1 <{ i <{ t can be viewed as a filtration of
kA..-module M by lemma 1. 2.
g%’],...,ml we just need to determine the number of
filtrations M = M, 2D M, D =+ D M, = 0 of
kA,,-module M such that M, /M;2N; for 1<G< ¢.

For any M € kA.-mod denote by [M] the

isomorphic class of M. The following lemma comes

So to compute

from two different ways to count the number of
filtration M © M; D M, of M such that M/M, 2
Nis M, /M, 2 N,, M, 2 N;.

Lemma 2.2 ForM, N,, N, € kA..-mod, we

have
E : L Mo E : Mo — oM
— 8N, .N, 8L.N, = ~ 8N,.LEN,.N- = &N|.N,.N, -
L L

Let H(RA..) denote the Q-space with basis
{IM]|M €kA..-mod}. Consider the multiplication
on HkA.) + [N/T=[N] =27 ¥ x,[M].
Note that by lemma 2. 1 the sum is a finite sum.

Lemma 2. 3 With the above construction,
H(RA..) is an associative Q-algebra with identity
[0], which is called the Ringel-Hall algebra of
kA ..

Proof
multiplication defined above follows from the fact
that the coefficients of [M] in ([N;] o [N, ] o
[N;] and [N, ] o ([N,] o [N;s]) are given by

Zg\; N, gl N, and Eg\r Ig\y N, respectively, and
[L]

hence they are equal by lemma 2. 2. ]
Ringel-Hall algebra H(%A,,) form € N can be

defined similarly.

Note that the associativity of the

Here we recall an important

formula to compute coefficients. Let M,N be
kA, -modules. Denote by ax the order of
automorphism  group  Aut,y (X)  for  any

kA,,-module X. Let Extat (M,N) be the set of
extension classes in Extar (M, N) with middle
term L. Then

a | Extjy (M,N),. \

14 p—
EMN avan | Homy (M, N) | 2

See Ref. [9].

Suppose M, N are kA..-modules of r-type and
u-type respectively. Set m = max{r,u}, then by
remark 2. 1 and formula (2) we have

ar. ‘EIZM (M,N), |

g :aMa\\Homm (M,N) |~ (3
Proposition 2. 1  Let Ml s M,, -, M, be
kA, -modules of mi-type for 1=1,2,, ¢

respectively. Setn € N,n>m = max{m, | i = 1,
<o, ¢}, If in H(RA )

(M ] - o [M,] = [Z])gﬁ'dl.m.m (L],

when M, are viewed as kA,-modules, then in

H(RA..) there holds
[M;] - o [M,]= [nglwl% (L],
L

where all L’s in the last sumfnation are viewed as
kA..-modules.
Proof TFirstly if in H(RA..)

[M, ] - o [M,] = Zgll\hl,~~~.Mt (L],
[L]
then we claim that any kA..-module L with

]Png\‘/,l,...

lemma 1. 4 repeatedly. By lemma 1. 2 we can view

., 7 01is of m-type. To verify it just use

L as a kA,-module.
Secondly when M, ,M,,---
kA,-modules, if in H(kA,)

(M, oo [M]= [ngwlM (L],

then £A,-modules L can be viewed as #A..-modules

,M, are viewed as

by lemma 1. 2. And it is easy to check that such
kA..-module L. must be of m-type. Moreover, by
remark 2.1 corresponding coefficients gf\‘/zl,..._M/ are
equal. This completes the proof. []

Theorem 2. 1 H(kA,) can be naturally
viewed as a subalgebra of H(RA..) by sending [ L]

in H(kA,,) to corresponding [ L] in H(kA..) for

m & N,
Proof It follows from proposition 2.1
immediately. L]

Similarly, we can prove that H(kA,,) can be
naturally viewed as a subalgebra of H(RA,) if m <
n. Given a finite Z-module M, denote its length by
Iz(MD.

Lemma 2.4 Let R be a finitary ring, and let
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L € R-fin have a filtration with factors M, , -+, M,.
Then lz(Extg'(L,L)) < l;(Extg' (M, @ -+ @
M,, M @ - @ M,)). Moreover, the equality
holds if and only if L2 M, @ -+ P M..

Proof See Ref.[10]. ]

Denote by ind-kA.. the full subcategory of
kA .. -mod
kA..-modules.

Corollary 2. 1  H(kA..) is generated by all
[M] withM € ind-#A...

Proof LetM = M, @ - @ M, with M,

indecomposable where i = 1,+++,z. Assume that M

consisting of indecomposable

is a of m-type, then M; can also be viewed as
kA, -modules. Use induction on lz(E, (M,M)).
If |Ej (M.M)| = 1, then [M] = ¢[M,] ¢ ==+ «
[M,] for some0 %4 ¢ € Q. If \E,A (M,M) | £ 1,
then

(Mo o [M]=c[M]+ >} alL].

[L]#[M]
where in the summation L runs over all modules

such that ¢;, = 0. Since kA.. is a finitary ring, we
have
lz(Epn (L, L)) < lz(Ep_ (M,M)),

by lemma 2. 4. Then the assertion follows by
induction. L]

One can introduce a total ordering on the set
of isoclass of indecomposable 2A..-modules, i. e, ,
the set {ind{}.,en. For each pair of
indecomposable £A..-modules ind} and ind,ind} <
ind; ifa < cora = cand b < d. That is

ind} << ind} < --- < ind} < ind} < -+ --- .
Let E << F be a pair of
indecomposable kA..-modules. Then Hom (E,
F)=0and |Ex (F,E)|=1.

Proof Denote by S; the simple £A..-module

Proposition 2. 2

corresponding to the i-th vertex of the quiver A..,
i € N. Let E = ind},F = ind; witha < b.c < d,
asb,c,d € N, then there are two cases arising,
eithera << cora = cand b <d.

If a << ¢, then any quotient module of ind;
contains simple S, as its top while no submodule of
ind; has S, as its factor, so we must have

Hom,_(ind§,ind;) = 0. If a = ¢ and b <" d, since

indy is a uniserial module and indj is a proper
quotient module of indy, and any quotient module
of ind{ does not have S, as its socle, we have
Homa_ (ind§,indy) = 0.

Recall that for finite-dimensional #A,-modules
X and Y withn € N, there holds DExliA“ (X, V)«
Hom s (£ 'Y, X) where r is the Auslander-Reiten
translation, D = Hom,(—, k). It is easy to get
7z 'ind} =
kA,-module. Let f = max{b,d}, thenind} and indj

can all be viewed as £A,modules. If @ = 1, then

indi~ if @ > 1 when we view ind} as a

Exz‘mfl(indﬁ'{,ind},) = 0 since ind; is an injective
kA module. Ifa > 1, thena—1 < ¢ sincea <c.
Therefore Hom Y (r 'ind¢ ,indy) = Hom M, (indé—
ind;) = 0 by the similar reason discussed above.
Thus we have Extjy (ind;.indj) = 0.
| Ew_ Cindgind)) | = | Exte, ' (indg.indi) | = 1 by
theorem 1. 3. L]

Let E be a RA..-module, » € N, denote by
[ E]" the product of r copies of [ E] in H(FA..). By
using the ordering defined above, one obtains a
PBW-type basis of H( RA..).

Lemma 2.5 Let0 > M—>E—> N — 0 be an
exact sequence of kA..-modules. If Homu  (M,N)

Hence

=0, then gk.v = L.

Proof letr :
then since Hom (M,N) = 0 one gets that M &
ker (). Comparing the dimensions of M,E and N,

E — N be an epimorphism,

one can show that M = ker(x). Now the lemma
follows from the definition. ]
Theorem 2.2 The set
Q=A{LE,Jn-[E ]« | E, € indRA..,
a € Z—y.r; € N}
gives a PBW-basis of H( kA..), where E; > E; >

> E, are pairwise non-isomorphic
indecomposable £A..-modules.
Proof Let E € kA. -mod, then one can prove

by induction that there exists¢;, m € Nwithj =1,
2,y m, such that E can be decomposed as
tnE, @eE, - @tE;, where E; are pairwise
non-isomorphic indecomposable kA..-modules and
E; (E; if j>1.7,L = 1,++,m with the order defined

above.
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Furthermore an easy calculation by lemma 2. 5
shows that [E] = [ E; ] [nE;, e+ <[1,E; ]Jin
H(kA ). Tt is easy to check that if F € ind-£A..
then \Em (F,F)| = 1, so in H(¥A..) one has
[F]" = h,[rF] for some h, € Q. Hence [E] =
D]El.l @tinz @f,]inm] = [thl] ° DinZ] o e 0
[e,E; 1=h[E;, J" oo [E;, ] for some0#h &

Q Since [E, Ji « -+ [E, o = H[4E, @LE,

@ ¢, E; 1, the set O is linearly independent over
Q. L]
For more information about PBW-basis of
Ringel-Hall algebras please refer to [11].
Proposition 2. 3  Multiplications of [ind{ ],
[ind; ] in H(PA.) with a,b,c.d € N are given as
follows.

[indj ]« [ind; ] =

(¢+ D[ind{ @ ind; ] a=cb=d,
Lind{ @ indg ] a>c,b=d,
glind} @ indy ] a<<cob=d,
[ind¢ @ indy] b>d,

glindi @ ind ;4] c=a, b<d,

lindi D ind 7 ]+[ind, ] c =b+1, b<<d,
gqlindj @ ind; ]+
Lind ,* @ ind,*] c € la+t+1.b], b<d,
Lind{ @ indg] ce la.b+1], b<d.
Proof It is just to calculate directly according
to (3)
representations of 2A.. given in section 1. []

Let R be a finitary ring. H(R) is the Ringel-

and properties of finite-dimensional

Hall algebra of R. By definition the composition
algebra C(R) is the subalgebra of H(R) generated
by all isoclasses of finite simple R-modules [ S].
For more information about C(R), see Ref. [12],
[13] and [14].
Proposition 2. 4 H(kA..) coincides with its

composition algebra.

Proof By theorem 1.2 {ind}|a < b, a,b €
N} are all indecomposable £A. -modules and
{ind*|a € N} are all simple kA..-modules. By

corollary 2. 1 we only need to prove that [indf |,
a<b,asb € N can be generated by {ind? | a €

N}. By proposition 2. 3 [indi, ] o [ind) ] = [ind; ]+
[ind/“ﬁl @ in Z] and [in 2] ° [in ;,Ll] - [indﬁl @
ind; J. So [indj] = [indj ] o [ind}] — [ind;] -
[indi; ]. Then the assertion follows by induction
on the length of modules. L]

In the following we describe relations between
H(RA..) and H(kA,) forn € N,

Theorem 2.3 Letn € N, then

lim H(RA,) = H( lim kA,) = H(RA.).

n —too n ——too

Proof First we claim that lim 2A, = kA...
n—too

It’s clear that A, is a subalgebra of kA, if n<C
u. Denote by ¢, the inclusion map kA, —— RA,. It
is obvious that ¢} = ¢,“¢2 if n < u <[, nsu,l € N,
It is clear that kA, is a subalgebra of kA.. for any
n € N, defining f, to be the inclusion map
kA, —» kA . Certainly f,= f,¢7 if n<<lu,n,u EN.

To show that kA .. is the direct limit, we need
to prove the following universal property: for any
k- algebra X and a set of algebra morphisms {g,:
kA, =X |n € N} such that g, = g.$ forn < u.n,
u € N, there exists a unique algebra morphism ¢
from kA .. to X such that g, = ¢f, for anyn € N,

Since the set of all finite length path elements
of A.. is a basis of kA.., we define ¢ as o(p) =
g.(p) . pis apath element of A..,n=1t(p). Leta,f
be two paths in A.. s setn = t(a) ,u = t(), then
o(fa) =g.(Ba) = g.(Pg.(a) =

2.Pgbi(a) = g.(Pg.(a) = c(Po(a),
which implies that ¢ is an algebra morphism.

Furthermore, for any path p in A, we have
t(p)<n, therefore

of n(P) =06(p) = g (p) = g.(p).
Moreover if such ¢ exists we must have ¢(p) =
of .« (p) = g,(p) for any finite path element p of A..
with t(p) =n. Now we have proved that ,,liril,/"A" =
kA ..

Secondly we shall prove that nlirﬁriloH(kA”) =
H(RA ).

By lemma 2.6 H (kA,) can be viewed as a
subalgebra of H (kA,) if n<<u, n, u € N and
H(kA,) can be viewed as a subalgebra of H(kRA..)
forn € N. Let ¢i : H(RA,) —> H(kA,) be the
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inclusion map, that is ¢i([E]) = [E] for any E €
kA,-mod. Clearly ¢i = ¢,“¢i for any n < u < L.
Define @, to be the inclusion map H(kA,) —>
H(A.) forn € N, that isa, ([ E]) = [E] for any
E € kA,-mod. Certainly we have a, = a.¢} if n <<
us nou € N.

Again we need prove the following universal
property: for any Q -algebra X and a set of algebra
morphisms {A, : H(kA,) — X |n & N} such that &,
= hp for any n<Cu, there exists a unique algebra
morphism @ : H(kA..) — X such that h, = 0 q, for
anyn € N.

Let E be a kA.-module of n-type, define
OE]D) = h,(E]), where E is viewed as a
kA,-module in the right hand side of the formula.
Since the isoclass of all finite-dimensional
kA..-modules forms a basis of H(RA..),0 can be
uniquely spanned to a linear map from H(RA..) to X.

Let E, F be two

kA..-modules of n-type and u-type respectively.

finite-dimensional

Let v=max{n,u}, then E and F can also be viewed

as kA,-modules. Then by theorem 2. 1 we have

OE]« [FD =0( > gbe[L])= D) ghsd((L] =

[L] (L]

M ghrh, (LD = h( D) ghr[L]) =

[L] L]

h,([E] < [F]) = h,(([EDh,([F]) =

hp," ((EDh (LF]) =

h ((EDh,([F] = 0(EDOFD,
where any kA..-module L appeared in the above
summations is of v-type, and hence L. becomes a
kA,-module. Thus @ is an algebra morphism.

Given any finite-dimensional kA,-module E,

then we can view E as a kA..-module, and there
exist unique numbers u € N with u < »n such that E
is of u-type, therefore E also can be viewed as a

kA,~module. Since ¢ is the inclusion map, we have

Oa,(LED =0(ED =h,(E]D =

hgi(LE]D = h,(LED,
and hence 0, = h,,.

Conversely, if such @ exists, we have § ([E])
= 0a,((E]) = h,([E]) for any finite-dimensional
kA..-module E of n-type. Now we have proved
that lim H(kA,) = H(kA.). []

n—>too
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